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Summary: (±)-4'-Iodoindoimycenate 6 was stereoselectively converted into the (±)-(2,3)-syn-2- 
thioacetoxy ester 16 with retention of C2-stereochemistry in (±)-6. Palladium-catalysed cyclisation of 
indolyl iodide and the internal C2 thiol group of the substrate (±)-17 derived from (±)-16 gave the (±)-cis 
methyl ester 2 of natural chuangxinmycin (1). © 1997 Elsevier Science Ltd, All rights reserved. 

Chuangxinmycin (1), isolated from Actinoplanes tsinanensis n. sp. in China, exhibits in vitro an antibacterial 

spectrum that includes a number of Gram-positive and Gram-negative bacteria. This material was reported to be 

active in mice against Escherichia coli and Shigella @senteria infections/n vivo, and effective in the treatment of 

septicaemia, urinary, and biliary infections caused by E. coil in preliminary clinical results. 1 
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The relative structure of I was confirmed by synthesis2, 3 and the absolute configurations were determined as 

4S, 5R based on the degradation study of the natural product (1) 4 and optical resolution of (-+)-1 with S-(-)-et- 

phenylethyl amine. 5 Synthetic attempts were made using two published routes. One is an internal Knoevenagel 

condensation of 4-substituted-3-acetyl indole 3 and the subsequent reduction of 4 to give a mixture of (+-)-cis- 

methyl ester 2 of I and tram'-2 via pathway B. 2 In the other route treatment of 5 with fluoride ion liberated the 

indol-l-yl anion by desilylation, and Michael addition of the ambident C-3 anion to the powerful et-thioacrylate 

acceptor could bring about the required cyclisation via pathway C. 3 (chart 1) But these routes were found to be 

unacceptable for the synthesis of the desirable optically active form of 1. We now report a highly stereoselective 

synthesis of (-+)-1 via pathway A directed toward chiral synthesis starting with the requisite 6 possessing two 

definite absolute configurations at the C2- and C3-positions. The synthesis of indolmycenate (7), being an 

important intermediate for the synthesis of indolmycin 6, was achieved by the reaction of indole and (_-x-)-trans- 
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(2,3)-epoxy butanoate 97 in the presence of SnCI4 along with nuclcophilic displacement with inversion at the C-3 

carbon of the coordinated cpoxide. 8 This strategy appeared to be the most promising from a stercochemical 

standpoint for the stcrcoselcctive construction of C2- and C3-configurations of 6 by the reaction of 4-iodoindolc 

8 and (±)-9 in the presence of SnCI4. (chart 2) 

By applying the reported procedure, 9 4-nitroindole 12 was synthesized from 2-amino-6-nitrotoluen¢ 10 v/a 

imidate ester 11 in 69% overall yield. Conversion of 12 into the desired 4-iodoindolc 8 was can-icd out by the 
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reported procedure 10 as shown in chart 3. Protection (13; 93% yield) of the nitrogen group of 12 as a methoxy 

carbonyl group followed by catalytic hydrogenation gave 4-amino indole derivative 14 (73% yield). 

Diazotization of 14 with sodium nitrite and hydrogen chloride and subsequent treatment of KI afforded 4- 

iodoindole derivative 15 (80% yield), which was converted into the desired 4-iodoindole 8 (99% yield) by 

hydrolysis. The reaction of 8 and (-+)-9 in the presence of SnCI4 afforded (±)-4'-iodoindolmycenate 6 (32% 

yield) 11 along with 4-iodoindole dimer (11% yield) and (±)-(2,3)-ant/-3-chioro-2-hydroxy butanoate (52% 

yield). Treatment of (±)-6 with MsCI in pyridine followed by treatment with CsSAc 12 gave the desired (±)- 

(2,3)-syn-2-thioacetoxy ester 16 in 70% overall yield with complete retention of C2-stereochemistry. 

Deacetylation of (±)-16 with K2CO3 in MeOH followed by treatment with Pd(PPh3)413 in the presence of Et3N 

afforded the (±)-cis methyl ester 2 in 67% overall yield, whose spectral data (mp 147-148 *C, IR, NMR) were 

identical with those (rap 145-146 *C 2c) of the reported (-+)-2. An alkaline hydrolysis of (-+)-2 was carried out 

by the reported procedure 2c to provide the racemic form of 1 (mp 189-190 *C), which is consistent with the 

reported (±)-1 (mp 190-191 *C, 2d 186-187 *c2f). 

As shown in chart 4, it is proposed that neighbouring-group participation involving the electron-rich C-3 of the 

indole ring accounts for the stereoselective conversion of (-+)-6 to (-+)-16. The preferred conformation of the 

mesylate 1814 derived from (-+)-6, in which steric interactions are minimized, is shown in 18. In this rotamer, 

the mesyloxy group is trans to the indol C-3, so that ready displacement can occur. Nucleophilic attack by the 

thioacetoxy ion takes place at the C2-position because the charge in the cyclopropylium ion intermediate is still 

predominantly centered on the C-2 carbon atom. 15 Since this is essentially a double SN 2 mechanism, the syn- 

stereochemistry of the (±)-syn-2-hydroxy ester 6 is retained in the (±)-syn-2-thioacetoxy ester 16. 

(-+)-6 ~ M o O O C  C O O M e  

,no-  : ,-, 
Chart 4 

(±)-16 

According to the reported synthesis of (±)-2 via pathway B, catalytic hydrogenation of (---)-4 gave the 40% 

yield of (±)-2 2c, while chemical reduction of (±)-4 afforded a mixture of (±)-cis- and -trans-2.2d, 2f It is of 

important significance in the present synthesis via pathway A that palladium-catalysed coupling of the thiolate ion 
itself without derivation into thiostannanes can proceed to the cyclization without isomerization at the C5-position 

in high yield. 

In conclusion, (±)-4-iodoindolmycenate 6 obtained by the reaction of 4-iodoindole 8 and (±)-trans-(2,3)-epoxy 

butanoate 9 in the presence of SnCI4, was stereoselectively converted into the (±)-(2,3)-syn-4'-iodo-2- 
thioindolmycenate 16, which is treated with Pd(PPh3)4 in the presence of Et3N to afford the (-+)-methyl ester 2 

of natural chuangxinmycin (1). 
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